首页 | 本刊简介 | 编委会 | 投稿征稿 | 期刊订阅 | 下载中心 | English
 
   
  论文快速检索

请输入关键词

 

 

   
  信息公告
海外撷英栏目开通,欢迎投稿

热带亚热带植物学报网络开通

访问总次数
11842030
今日访问
995
当前在线
0人
 
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 217次   下载 95 本文二维码信息
码上扫一扫!
分享到: 微信 更多
华南地区亚热带树木叶面积指数的高光谱反演研究
汪清泓1,2, 刘振华1,2, 胡月明1,2,3,4, 宋英强1,2
1.华南农业大学资源环境学院, 广州 510642;2.国土资源部建设用地再开发重点实验室, 广州 510642;3.广东省土地信息工程技术研究中心, 广州 510642;4.广东省土地利用与整治重点实验室, 广州 510642
摘要:  为构建树种叶面积指数的估算模型,以NDVI、RVI、FREP、CIGreen、CIRed-edge、MSAVI2为高光谱特征变量,通过统计分析,确定反演树种叶面积指数的最佳光谱特征变量,构建华南农业大学校园内50种亚热带树木的叶片反射率和叶面积指数(LAI)模型。结果表明,6种高光谱特征变量与树种叶面积指数间都具有极显著相关性,其中红边位置反射率(FREP)和比值植被指数(RVI)与LAI的拟合方程的R2都大于0.8,决定系数分别为0.820和0.811。经过精度验证,FREP估算的均方根误差(RMSE)只有0.13,该回归模型为估测亚热带典型树种的叶片LAI最佳模型。从高光谱遥感的角度结合亚热带植被的群落结构特点来看,建立的红边位置光谱反射率与叶面积指数的回归模型普遍具有较高的拟合度,所以利用高光谱特征变量反演亚热带树木叶片的叶面积指数等植被参数的应用前景较好。
关键词:  叶面积指数  高光谱模型  亚热带典型树种  植被指数  回归模型
DOI:10.11926/jtsb.3840
分类号:
基金项目:国家自然科学基金项目(41671333);广东省科技计划项目(2014A050503060,2017B090907030);广州市科技计划项目(201807010048,201804020034)资助
Hyperspectral Inversion of Leaf Area Index of Subtropical Vegetation in South China
WANG Qing-hong1,2, LIU Zhen-hua1,2, HU Yue-ming1,2,3,4, SONG Ying-qiang1,2
1.College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;2.Key Laboratory of Construction Land improvement, Ministry of Land and Resources, Guangzhou 510642, China;3.Guangdong Province Engineering Research Center for Land Information Technology, Guangzhou 510642, China;4.Guangdong Province Key Laboratory for Land use and consolidation, Guangzhou 510642, China
Abstract:  In order to determine the optimal hyperspectral characteristic variables of subtropical tree species and construct the estimation model of leaf area index (LAI), the leaf reflectance and LAI of 50 tree species in the campus of South China Agricultural University (SCAU) were measured. At the same time, the relationship model of LAI with the six hyperspectral characteristic variables, including NDVI, RVI, FREP, CIGreen, CIRed-edge and MSAVI2, were constructed through statistical analysis, respectively. The results showed that there were significant correlations between the six hyperspectral characteristic variables and LAI of tree species. The R2 of fitting equations between LAI with red edge position reflectivity (FREP) and the ratio vegetation index RVI were more than 0.8 with correlation coefficients for 0.820 and 0.811, respectively. The root mean square error (RMSE) of FREP estimation is only 0.13, so the regression model is the best model for estimating the LAI of typical subtropical tree species. Combining subtropical vegetation community structure and hyperspectral remote sensing, the regression model between red edge position reflectivity and leaf area index generally has a high fitting degree. Therefore, using hyperspectral characteristic variables inverted subtropical leaves of the leaf area index and other vegetation parameters had better application prospects.
Key words:  Leaf area index  Hyperspectral model  Subtropical typical tree species  Vegetation index  Regression model

Copyright 2007 版权所有 中国科学院华南植物园《热带亚热带植物学报》编辑部
地址: 广州市天河区兴科路723号 中国科学院华南植物园 《热带亚热带植物学报》编辑部 邮编:510650 电话: 86 (0)20-3725 2514  传真:86 (0)20-3725 2642 E-mail: jtsb@scib.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09084417号-2