文章快速检索     高级检索
  热带亚热带植物学报  2018, Vol. 26 Issue (2): 191-196  DOI: 10.11926/jtsb.3803
0

引用本文  

周戚, 赵婷, 吴寿远, 等. 鹰爪花中生物碱类成分研究[J]. 热带亚热带植物学报, 2018, 26(2): 191-196. DOI: 10.11926/jtsb.3803.
ZHOU Qi, ZHAO Ting, WU Shou-yuan, et al. Studies on the Alkaloids from Artabotrys hexapetalus[J]. Journal of Tropical and Subtropical Botany, 2018, 26(2): 191-196. DOI: 10.11926/jtsb.3803.

基金项目

国家自然科学基金项目(31360069);教育部创新团队发展计划滚动支持项目(IRT-16R19);海南自然科学基金创新团队项目(2016CXTD007)资助

通信作者

陈光英, E-mail:chgying123@163.com

作者简介

周戚(1990~), 女, 博士研究生, 研究方向为天然药物化学。E-mail:345554598@qq.com

文章历史

收稿日期:2017-08-16
接受日期:2017-11-06
鹰爪花中生物碱类成分研究
周戚 , 赵婷 , 吴寿远 , 付艳辉 , 陈光英 , 赵俊杰     
海南师范大学化学与化工学院, 热带药用植物化学教育部重点实验室, 海口 571158
摘要:为了解鹰爪花(Artabotrys hexapetalus)的化学成分,采用各种柱层析和色谱方法从鹰爪花茎中分离鉴定了12种生物碱类化合物,分别为:光千金藤定碱(1)、四氢非洲防己碱(2)、四氢药根碱(3)、前莲碱(4)、奥可梯木种碱(5)、华防己碱(6)、深山黄堇碱(7)、光千金藤碱(8)、鹰爪花碱(9)、lanuginolide(10)、isoscoulerine(11)和N-甲基阿西米洛宾(12)。其中化合物1~7均为首次从鹰爪花属植物中分离得到。化合物10对白色葡萄球菌(Staphylococcus albus)和蜡状芽孢杆菌(Bacillus cereus)生长都具有较好的抑制作用,MIC值分别为20和10 μg mL-1
关键词番荔枝科    鹰爪花    生物碱    抗菌活性    
Studies on the Alkaloids from Artabotrys hexapetalus
ZHOU Qi , ZHAO Ting , WU Shou-yuan , FU Yan-hui , CHEN Guang-ying , ZHAO Jun-jie     
Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
Foundation item: This work was supported by the the National Natural Science Foundation of China (Grant No. 31360069), the Development Program for Innovative Research Team in Ministry of Education (Grant No. IRT-16R19), the Natural Science Foundation for Innovation Research Team in Hainan Province (Grant No. 2016CXTD007)
Abstract: In order to search the chemical constituents of Artabotrys hexapetalus, twelve alkaloid compounds were isolated from the stems of A. hexapetalus. On the basis of spectal data, they were identified as stepholidine (1), tetrahydrocolumbamine (2), tetrahydrojatrorrhizine (3), pronuciferine (4), glaziovina (5), sinoacutine (6), pallidine (7), stepharine (8), artacinatine (9), lanuginolide (10), isoscoulerine (11) and N-methylasimilobine (12). The alkaloids 1-7 were isolated from the genus Artabotrys for the first time. Compound 10 showed potent antibacterial effects on Staphylococcus albus and Bacillus cereus, with MIC of 20 and 10 μg mL-1, respectively.
Key words: Annonaceae    Artabotrys hexapetalus    Alkaloids    Antibacterial activity    

番荔枝科(Annonaceae)鹰爪花属(Artabotrys)植物在全世界约有100种, 主要分布于热带和亚热带地区, 我国有4种,即毛叶鹰爪花(A. pilosus)、狭瓣鹰爪花(A. hainanensis)、鹰爪花(A. hexapetalus)和香港鹰爪花(A. hongkongensis),主要分布于海南、广东和广西等省区[1]。鹰爪花又名鹰爪,既是药用植物,又是名贵芳香的观赏植物,多为栽培。根味苦性寒,有杀虫作用,民间用于治疗疟疾;果实味微苦涩,性微寒,有清热解毒作用,可用于治疗头颈部淋巴结核[2]。番荔枝科植物因富含抗肿瘤活性成分而备受关注,国外学者先后对鹰爪花属多种植物的根、茎(皮)、叶和果实的化学成分进行了研究。相关化学成分研究可追溯到1982年,近十年来, 该属植物的化学成分及药理活性研究取得一些进展, 目前分离得到生物碱类[3-5]、黄酮类[5-6]、木脂素类[1, 7-8]及其萜类[2, 9-10]等多种类型化合物,其中生物碱类化合物大多具有抗肿瘤活性。2008年Liu报道lirio-denine可以诱导肿瘤细胞凋亡。同时, liriodenine分别和金属离子Mn2+、Fe2+、Co2+和Zn2+形成复合物,增强对肿瘤细胞株的毒性[11-12]。本研究对鹰爪花中生物碱类成分进行了系统研究,为进一步开发利用鹰爪花属药用植物资源,阐明其药效物质基础。

1 材料和方法 1.1 仪器和材料

Bruker AV-400 MHz超导核磁共振仪(瑞士Bruker公司);Finnigan-MAT-95-MS质谱仪(德国Finnigan公司);YOKO-ZX紫外分析暗箱(武汉药科新技术开发有限公司);BSZ-100自动部分收集器(上海青浦沪西仪器有限公司);显微熔点仪(上海精密科学仪器有限公司);SB-1100型旋转蒸发仪(日本EYELA公司);Sephadex LH-20凝胶(Amersham Biosciences公司);所用试剂均为分析纯,购买于西陇化工股份有限公司。

鹰爪花茎于2013年4月采集于海南省五指山市,经海南师范大学生命科学学院钟琼芯教授鉴定为番荔枝科鹰爪花属植物鹰爪花(Artabotrys hexa-petalus)的茎,凭证标本(CHEN20130401)保存于海南师范大学热带药用植物化学教育部重点实验室标本室。

采用7株常见陆地致病菌(菌种保存于海南师范大学热带药用植物化学教育部重点实验室)进行抗肿瘤活性评价,分别为白色葡萄球菌(Staphylo-coccus albus)、金黄色葡萄球菌(S. aureus)、大肠杆菌(Escherichia coli)、枯草芽孢杆菌(Bacillus subtilis)、蜡状芽孢杆菌(B. cereus)、四联球菌(Micrococcus tetragenus)和藤黄八叠球菌(M. luteus)。

1.2 提取和分离

干燥的鹰爪花茎(18 kg)粉碎后,用85%乙醇常温下浸泡提取3次,每次5 d,合并提取液,减压蒸馏回收乙醇,得乙醇总浸膏(1.5 kg)。将浸膏分散于蒸馏水中,用HCl调pH值1~2,用氯仿萃取3次,再用NaOH溶液调pH值至9~10,用氯仿萃取4次,得生物碱总浸膏(80 g)。将生物碱总浸膏(80 g)用100~200目硅胶上大柱,通过点板合并相同馏份得到8个组分Fr.1~Fr.8。Fr.1经硅胶柱色谱,用氯仿-甲醇(98:2)洗脱重结晶得到化合物1 (18.5 mg)、8 (4.8 mg)和10 (7.3 mg);Fr.2经硅胶柱色谱,氯仿-甲醇(95:5)洗脱得到组分Fr.2A和Fr.2B, Fr.2A经氯仿-甲醇(95:5)洗脱重结晶得到化合物2 (3.8 mg)、12 (2.5 mg)和9 (7.3 mg),Fr.2B经氯仿-甲醇(90:10)洗脱重结晶得到化合物3 (3.5 mg)和11 (6.6 mg); Fr.3经反复硅胶柱色谱、Sephadex LH 20凝胶柱色谱纯化得到化合物4 (3.8 mg);Fr.4经硅胶柱色谱, 氯仿-甲醇(85:15)洗脱,得到组分C和D,组分C经过制备薄层色谱法,高效液相色谱法分离纯化得到化合物5 (2.0 mg)、6 (3.1 mg)和7 (4.0 mg)。

1.3 结构鉴定

化合物1  淡褐色粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性;C19H21NO4, ESI-MS m/z: 328 [M + H]+; 1H NMR (400 MHz, CDCl3): δ 6.83 (1H, d, J = 8.0 Hz, H-12), 6.78 (1H, s, H-1), 6.77 (1H, d, J = 8.0 Hz, H-11), 6.71 (1H, s, H-4), 4.33 (1H, d, J =16.0 Hz, H-8α), 3.84 (3H, s, 3-OCH3), 3.83 (3H, s, 9-OCH3), 3.74 (1H, d, J = 16.0 Hz, H-8β), 3.39 (1H, m, H-6β), 3.38 (1H, m, H-13α), 3.37 (1H, m, H-13α), 3.13 (1H, m, H-5α), 2.83 (1H, m, H-5β), 2.81 (1H, m, H-13β), 2.77 (1H, m, H-6α);13C NMR (100 MHz, CDCl3): δ 149.1 (C-10), 148.3 (C-3), 146.4 (C-9), 145.1 (C-2), 129.4 (C-13b), 126.4 (C-8a), 125.4 (C-12), 125.5 (C-12a), 116.9 (C-4a), 114.7 (C-11), 113.1 (C-1), 112.5 (C-4), 60.9 (C-13a), 60.5 (9-OCH3), 56.4 (3-OCH3), 54.4 (C-8), 52.7 (C-6), 35.9 (C-13), 30.5 (C-5)。上述数据与文献[13]报道的一致,故鉴定为光千金藤定碱。

化合物2  淡黄色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C20H23NO4, ESI-MS m/z: 342 [M + H]+; 1H NMR (400 MHz, CDCl3): δ 6.82 (2H, s, H-1, H-4), 6.71 (1H, d, J = 8.2 Hz, H-11), 6.60 (1H, d, J = 8.2 Hz, H-12), 4.22 (1H, d, J = 16.0 Hz, H-13a), 3.89 (3H, s, 10-OCH3), 3.88 (3H, s, 9-OCH3), 3.82 (3H, s, 3-OCH3), 3.72 (1H, d, J = 16.0 Hz, H-8β), 3.57 (1H, br s, H-8α), 3.18 (3H, m, H-6α, H-6β, H-5β), 2.82 (1H, dd, J = 16.0, 12.0 Hz, H-13α), 2.68 (2H, m, H-5α, H-13β); 13C NMR (100 MHz, CDCl3): δ 146.6 (C-9), 145.2 (C-10), 144.1 (C-2), 143.2 (C-3), 127.5 (C-8a), 127.5 (C-4a), 126.1 (C-13b), 125.2 (C-12a), 124.8 (C-12), 114.4 (C-11), 111.4 (C-4), 108.5 (C-1), 60.8 (9-OCH3), 59.7 (C-13a), 56.2 (10-OCH3), 56.1 (3-OCH3), 51.6 (C-6), 53.8 (C-8), 36.3 (C-13), 29.3 (C-5)。上述数据与文献[14]报道的一致,故鉴定为四氢非洲防己胺。

化合物3  淡黄色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C20H23NO4, ESI-MS m/z: 342 [M + H]+; 1H NMR (400 MHz, DMSO-d6): δ 6.85 (1H, s, H-1), 6.79 (1H, d, J = 8.0 Hz, H-11), 6.71 (1H, d, J = 8.0 Hz, H-12), 6.69 (1H, s, H-4), 4.18 (1H, d, J = 16.0 Hz, H-8α), 3.81 (3H, s, 9-OCH3), 3.79 (3H, s, 10-OCH3), 3.79 (3H, s, 2-OCH3), 3.56 (1H, d, J = 16.0 Hz, H-8β), 3.54 (1H, m, H-13a), 3.52 (1H, m, H-5β), 3.38 (1H, m, H-13α), 3.18 (1H, m, H-6β), 3.07 (1H, m, H-5α), 2.70 (1H, m, H-13β), 2.61 (1H, m, H-6α); 13C NMR (100 MHz, DMSO-d6): δ 149.2 (C-2), 149.1 (C-3), 148.8 (C-9), 145.0 (C-10), 130.7 (C-13b), 128.8 (C-12a), 127.8 (C-8a), 127.2 (C-4a), 125.4 (C-11), 116.4 (C-12), 112.9 (C-4), 110.4 (C-1), 60.9 (C-13a), 60.4 (10-OCH3), 56.7 (9-OCH3), 56.4 (2-OCH3), 54.9 (C-8), 52.7 (C-6), 36.5 (C-13), 29.3 (C-5)。上述数据与文献[15]报道的一致,故鉴定为四氢药根碱。

化合物4  淡黄色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C19H21NO3, ESI-MS m/z: 312 [M + H]+; 1H NMR (400 MHz, CDCl3): δ 7.00 (1H, d, J = 10.0, 2.8 Hz, H-12), 6.88 (1H, dd, J =10.0, 2.8 Hz, H-11), 6.38 (1H, dd, J = 10.0, 1.6 Hz, H-9), 6.28 (1H, dd, J = 10.0, 1.6 Hz, H-8), 6.64 (1H, s, H-3), 3.80 (3H, s, 2-OCH3), 3.60 (3H, s, 1-OCH3), 3.48 (1H, m, H-6a), 3.00 (1H, m, H-4β), 2.95 (1H, m, H-5α), 2.85 (1H, m, H-4α), 2.65 (1H, m, H-5β), 2.53 (3H, br s, N-CH3), 2.38 (1H, m, H-7α), 2.29 (1H, m, H-7β); 13C NMR (100 MHz, CDCl3): δ 186.3 (C-10), 153.7 (C-2), 153.3 (C-8), 149.7 (C-12), 144.7 (C-1), 134.1 (C-6c), 132.9 (C-6b), 128.6 (C-9), 127.8 (C-3a), 127.7 (C-11), 111.9 (C-3), 63.9 (C-6a), 61.2 (1-OCH3), 56.5 (2-OCH3), 53.6 (C-5), 50.6 (C-7a), 48.2 (C-7), 44.6 (N-CH3), 27.7 (C-4)。上述数据与文献[16]报道的一致,故鉴定为前莲碱。

化合物5  淡黄色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C18H19NO3, ESI-MS m/z: 328 [M + H]+; 1H NMR (400 MHz, CDCl3): δ 8.39 (1H, br s, 1-OH), 7.10 (1H, dd, J = 2.8, 8.0 Hz, H-12), 6.96 (1H, dd, J = 2.8, 8.0 Hz, H-11), 6.65 (1H, s, H-3), 6.22 (1H, dd, J = 2.8, 8.0 Hz, H-9), 6.14 (1H, dd, J = 2.8, 8.0 Hz, H-8), 3.98 (3H, s, 2-OCH3), 3.71 (3H, s, N-CH3), 3.01 (1H, m, H-4α), 2.70 (1H, m, H-5α), 2.69 (1H, m, H-4β), 2.34 (1H, m, H-5β), 2.33 (1H, m, H-6a), 2.23 (1H, m, H-7α), 2.09 (1H, m, H-7β); 13C NMR (100 MHz, CDCl3): δ 185.4 (C-10), 154.6 (C-8), 150.8 (C-12), 147.8 (C-2), 141.4 (C-1), 134.8 (C-6c), 127.6 (C-9), 126.6 (C-11), 124.6 (C-3a), 121.9 (C-6b), 110.6 (C-3), 65.2 (C-6a), 56.4 (2-OCH3), 54.6 (C-5), 50.5 (C-7a), 46.7 (C-7), 43.4 (N-CH3), 26.8 (C-4)。上述数据与文献[17]报道的一致,故鉴定为奥可梯木种碱。

化合物6  白色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C19H21NO4, ESI-MS m/z: 328 [M + H]+; 1H NMR (400 MHz, CD3OD): δ 7.15 (1H, s, H-5), 6.97 (1H, s, H-8), 6.72 (1H, d, J = 8.2 Hz, H-2), 6.55 (1H, d, J = 8.2 Hz, H-1), 4.42 (1H, d, J = 5.2 Hz, H-9), 3.93 (3H, s, 3-OCH3), 3.75 (3H, s, 6-OCH3), 3.54 (1H, d, J = 16.4 Hz, H-10β), 3.38 (1H, ddd, J = 16.4, 5.2 Hz, H-10α), 3.18 (1H, ddd, J = 12.4, 4.6, 1.8 Hz, H-16α), 2.90 (3H, s, N-CH3), 2.37 (1H, ddd, J = 12.8, 12.6, 4.6 Hz, H-15α), 2.02 (1H, ddd, J = 12.4, 12.6, 3.2 Hz, H-16β), 1.77 (1H, ddd, J = 12.8, 3.2, 1.8 Hz, H-15β); 13C NMR (100 MHz, CD3OD): δ 179.0 (C-7), 155.3 (C-14), 150.1 (C-6), 147.0 (C-3), 145.7 (C-4), 127.1 (C-12), 125.1 (C-11), 124.5 (C-8), 119.4 (C-5), 113.2 (C-1), 108.4 (C-2), 60.4 (C-9), 54.8 (3-OCH3), 53.9 (6-OCH3), 48.9 (N-CH3), 45.4 (C-16), 40.7 (C-13), 36.7 (C-15), 31.0 (C-10)。上述数据与文献[18]报道的一致,故鉴定为华防己碱。

化合物7  淡黄色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C19H21NO4, ESI-MS m/z: 328 [M + H]+; 1H NMR (400 MHz, CDCl3): δ 6.78 (1H, s, H-4), 6.70 (1H, s, H-1), 6.38 (1H, s, H-5), 6.33 (1H, s, H-8), 3.90 (3H, s, 3-OCH3), 3.81 (3H, s, 6-OCH3), 3.70 (1H, d, J = 4.0 Hz, H-9), 3.32 (1H, d, J = 16.0 Hz, H-10α), 3.03 (1H, dd, J = 4.0, 16.0 Hz, H-10β), 2.60 (1H, m, H-16β), 2.58 (1H, m, H-16α), 2.46 (3H, s, N-CH3), 1.83 (1H, m, H-15α), 1.95 (1H, m, H-15β); 13C NMR (100 MHz, CDCl3): δ 181.0 (C-7), 161.6 (C-14), 151.5 (C-6), 146.0 (C-3), 145.2 (C-2), 129.5 (C-12), 129.3 (C-11), 122.5 (C-8), 119.1 (C-5), 113.8 (C-1), 107.8 (C-4), 60.8 (C-9), 56.3 (3-OCH3), 55.2 (6-OCH3), 45.7 (C-16), 42.4 (C-13), 41.6 (N-CH3), 41.2 (C-15), 32.5 (C-10)。上述数据与文献[19]报道的一致,故鉴定为深山黄堇碱。

化合物8  白色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C18H19NO3, ESI-MS m/z: 298 [M + H]+; 1H NMR (400 MHz, CD3OD): δ 7.10 (1H, dd, J = 10.0, 3.0 Hz, H-12), 6.88 (1H, dd, J = 10.0, 3.0 Hz, H-11), 6.65 (1H, s, H-3), 6.36 (1H, dd, J = 10.0, 2.7 Hz, H-8), 6.27 (1H, dd, J = 10.0, 2.7 Hz, H-9), 4.38 (1H, m, H-6a), 3.82 (3H, s, 1-OCH3), 3.60 (3H, s, 2-OCH3), 3.56 (1H, m, H-5β), 2.95 (1H, m, H-4β), 3.20 (1H, m, H-5α), 2.77 (1H, m, H-4α), 2.75 (1H, dd, J = 11.5, 7.5 Hz, H-7α), 2.28 (1H, dd, J = 11.5, 7.5 Hz, H-7β); 13C NMR (100 MHz, CD3OD): δ 188.5 (C-10), 156.2 (C-12), 154.6 (C-2), 152.9 (C-8), 145.0 (C-1), 133.5 (C-3a), 133.4 (C-6b), 132.7 (C-9), 128.7 (C-11), 121.9 (C-6c), 113.0 (C-3), 61.4 (2-OCH3), 56.9 (1-OCH3), 56.3 (C-6a), 51.5 (C-7a), 48.5 (C-5), 43.9 (C-4), 29.5 (C-7)。上述数据与文献[20]报道的一致,故鉴定为光千金藤碱。

化合物9  白色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C19H21NO4, ESI-MS m/z: 328 [M + H]+; 1H NMR (400 MHz, DMSO-d6): δ 6.07 (1H, s, H-3), 4.47 (1H, dd, J = 4.0, 16.4 Hz, H-8α), 6.13 (1H, s, H-7), 4.72 (1H, d, J = 8.0 Hz, H-10), 3.89 (3H, s, 2-OCH3), 3.67 (3H, s, 1-OCH3), 3.56 (1H, m, H-5β), 3.35 (1H, m, H-4α), 3.10 (1H, m, H-5α), 3.02 (3H, s, N-CH3), 2.97 (1H, d, J = 16.4, 5.2 Hz, H-8β), 2.95 (1H, m, H-4β), 2.36 (1H, dd, J = 12.4, 4.0 Hz, H-9α), 1.89 (1H, dd, J = 12.4, 5.2 Hz, H-9β); 13C NMR (100 MHz, DMSO-d6): δ 197.3 (C-11), 150.8 (C-2), 148.6 (C-1), 147.6 (C-7a), 128.6 (C-11a), 116.7 (C-11c), 116.5 (C-11b), 110.7 (C-3), 127.1 (C-3a), 141.8 (C-6a), 101.3 (C-7), 72.3 (C-10), 59.3 (1-OCH3), 56.1 (2-OCH3), 49.5 (C-5), 39.5 (N-CH3), 34.7 (C-9), 28.9 (C-8), 28.6 (C-4)。上述数据与文献[4]报道的一致, 故鉴定为鹰爪花碱。

化合物10  白色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C18H11NO4, ESI-MS m/z: 306 [M + H]+; 1H NMR (400 MHz, CDCl3): δ 8.87 (1H, d, J = 7.6 Hz, H-4), 8.52 (1H, d, J = 7.6 Hz, H-5), 8.00 (1H, d, J = 2.8 Hz, H-8), 7.75 (1H, d, J = 8.4 Hz, H-11), 7.27 (1H, dd, J = 8.4, 2.8 Hz, H-10), 7.12 (1H, s, H-3), 6.34 (2H, s, -OCH2O-), 3.99 (3H, s, 9-OCH3); 13C NMR (100 MHz, CDCl3): δ 182.5 (C-7), 159.9 (C-9), 151.9 (C-2), 147.6 (C-1), 145.6 (C-3a), 145.0 (C-5), 136.9 (C-6a), 133.0 (C-11a), 129.2 (C-11), 126.4 (C-7a), 124.5 (C-4), 123.3 (C-1b), 122.7 (C-10), 110.4 (C-8), 108.7 (C-1a), 102.6 (C-3), 102.5 (-OCH2O-), 55.9 (9-OCH3)。上述数据与文献[21]报道的一致,故鉴定为lanuginolide。

化合物11  淡黄色无定型粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性; C19H21NO4, ESI-MS m/z: 328 [M + H]+; 1H NMR (400 MHz, DMSO-d6): δ 6.82 (1H, d, J = 8.0 Hz, H-11), 6.77 (1H, s, H-1), 6.75 (1H, d, J = 8.0 Hz, H-12), 6.70 (1H, s, H-4), 4.21 (1H, d, J = 16.0 Hz, H-8β), 3.85 (3H, s, 2-OCH3), 3.83 (3H, s, 10-OCH3), 3.55 (1H, m, H-13β), 3.51 (1H, m, H-13α), 3.50 (1H, m, H-13a), 3.23 (1H, m, H-6α), 3.12 (1H, m, H-5α), 2.75 (1H, m, H-8α), 2.69 (1H, m, H-6β), 2.66 (1H, m, H-5β); 13C NMR (100 MHz, DMSO-d6): δ 148.8 (C-2), 147.9 (C-9), 146.1 (C-3), 145.0 (C-10), 130.8 (C-13b), 128.8 (C-12a), 127.2 (C-4a), 126.3 (C-8a), 125.4 (C-11), 116.4 (C-4), 113.1 (C-12), 112.5 (C-1), 60.8 (C-13a), 60.4 (10-OCH3), 56.4 (2-OCH3), 54.9 (C-8), 52.9 (C-6), 36.6 (C-13), 29.3 (C-5)。上述数据与文献[22]报道的一致,故鉴定为isoscoulerine。

化合物12  淡黄色粉末,易溶于氯仿和甲醇等有机溶剂,改良碘化铋钾反应阳性;C18H19NO2, ESI-MS m/z: 282 [M + H]+; 1H NMR (400 MHz, DMSO-d6): δ 8.31 (1H, d, J = 8.0 Hz, H-8), 7.34 (1H, d, J = 8.0 Hz, H-11), 7.27 (1H, dd, J = 8.0, 7.6 Hz, H-10), 7.20 (1H, dd, J = 8.0, 7.6 Hz, H-9), 6.61 (1H, s, H-3), 3.73 (3H, s, 1-OCH3), 3.66 (1H, dd, J = 14.0, 4.4 Hz, H-7β), 3.62 (1H, m, H-5β), 3.61 (1H, m, H-5α), 3.50 (1H, d, J = 4.4 Hz, H-6a), 2.93 (1H, dd, J = 16.8 Hz, H-4β), 2.81 (1H, dd, J = 14.0, 4.4 Hz, H-7α), 2.65 (1H, dd, J = 16.8 Hz, H-4α), 2.54 (3H, s, N-CH3); 13C NMR (100 MHz, DMSO-d6): δ 150.7 (C-2), 145.2 (C-1), 137.3 (C-7a), 133.5 (C-11a), 130.6 (C-3a), 128.9 (C-11c), 128.8 (C-11), 128.5 (C-8), 128.5 (C-9), 128.0 (C-10), 127.3 (C-11b), 116.6 (C-3), 60.4 (1-OCH3), 54.8 (C-6a), 44.9 (N-CH3), 43.9 (C-5), 38.0 (C-7), 29.2 (C-4)。上述数据与文献[23]报道的一致, 故鉴定为N-甲基阿西米洛宾。

1.4 活性检测

通过微量稀释法[24-25],测定了所有化合物对白色葡萄球菌、大肠杆菌、枯草芽孢杆菌、金黄色葡萄球菌、四联球菌、藤黄八叠球菌和蜡状芽孢杆菌对白色葡萄球菌、蜡状芽孢杆菌生长的抑制活性的MIC值分别为20和10 μg mL–1,其他化合物的MIC值均大于40 μg mL–1

2 结果和讨论

本研究从鹰爪花茎的生物碱提取部位共分离得到12个生物碱类化合物, 分别鉴定为:光千金藤定碱(1)、四氢非洲防己碱(2)、四氢药根碱(3)、前莲碱(4)、奥可梯木种碱(5)、华防己碱(6)、深山黄堇碱(7)、光千金藤碱(8)、鹰爪花碱(9)、lanu-ginolide (10)、isoscoulerine (11)和N-甲基阿西米洛宾(12)。其中化合物1~7均为首次从鹰爪花属植物中分离得到。测定了各化合物对7种致病菌的抑制活性,结果表明, 化合物10对白色葡萄球菌、蜡状芽孢杆菌具有较好的抑制活性。其他11个化合物的MIC值均大于40 μg mL–1。据文献报道, 光千金藤定碱(1)和四氢非洲防己碱(2)对新型隐球菌(Cryptococcus neoformans)具有微弱的抑制活性[26], lanuginolide (10)具有一定的抗结核杆菌的活性[27], 光千金藤碱(8)对疱疹病毒具有较好的抑制活性[28]。本研究丰富了鹰爪花的化学成分组成,为鹰爪花药用价值的进一步开发与利用提供了科学依据。

参考文献
[1] Li T M, Li W K, Yu J G. Flavonoids from Artabotrys hexapetalus[J]. Phytochemistry, 1997, 45(4): 831-833. DOI:10.1016/S0031-9422(97)00012-5
[2] ZHANG L, ZHOU W S, XU X X. A new sesquiterpene peroxide (yingzhaosu C) and sesquiterpenol (yingzhaosu D) from Artabotrys unciatus (L.) Meer[J]. J Chem Soc Chem Commun, 1988(8): 523-524. DOI:10.1039/C39880000523
[3] SINGH J P, SINGH A K, SINGH A, et al. Glycosidic constituents of Artabotrys odoratissimus[J]. Ind J Nat Prod, 2008, 24(4): 19-23.
[4] WU Y C, CHEN C H, YANG T H, et al. Cytotoxic aporphines from artabotrys uncinatus and the structure and stereochemistry of artaci-natine[J]. Phytochemistry, 1989, 28(8): 2191-2195. DOI:10.1016/S0031-9422(00)97942-1
[5] HSIEH T J, CHEN C Y, KUO R Y, et al. Two new alkaloids from Artabotrys uncinatus[J]. J Nat Prod, 1999, 62(8): 1192-1193. DOI:10.1021/np990085l
[6] HSIEH T J, CHANG F R, CHIA Y C, et al. The alkaloids of Arta-botrys uncinatus[J]. J Nat Prod, 2001, 64(9): 1157-1161. DOI:10.1021/np010036k
[7] LI T M, YU J G. Studies on the chemical constituents of the leaves from Artabotrys hexapetalus[J]. Acta Pharm Sin, 1998, 33(8): 591-596.
李彤梅, 余竞光. 鹰爪叶化学成分研究[J]. 药学学报, 1998, 33(8): 591-596. DOI:10.3321/j.issn:0513-4870.1998.08.006
[8] YU J G, LI T M, SUN L, et al. Studies on the chemical constituents of the seeds from Artabostrys hexapetalus (Annonaceae)[J]. Acta Pharm Sin, 2001, 36(4): 281-286.
余竞光, 李彤梅, 孙兰, 等. 鹰爪种子化学成分的研究[J]. 药学学报, 2001, 36(4): 281-286. DOI:10.3321/j.issn:0513-4870.2001.04.010
[9] LIANG X T, YU D Q, WU W L, et al. The structure of Yingzhaosu A[J]. Acta Chim Sin, 1979, 37(3): 215-230.
梁晓天, 于德泉, 吴伟良, 等. 鹰爪甲素的化学结构[J]. 化学学报, 1979, 37(3): 215-230.
[10] ZHANG A, ZHANG Y, BRANFMAN A R, et al. Advances in deve-lopment of dopaminergic aporphinoids[J]. J Med Chem, 2007, 50(2): 171-181. DOI:10.1021/jm060959i
[11] LIU H G, QIN S H, LIU L M, et al. Apoptosis-inducing effects of AgLA2 on SPC-A-1 cells and its mechanism in vitro[J]. Chin Pharmac Bull, 2008, 24(11): 1449-1452.
刘华钢, 秦三海, 刘丽敏, 等. 鹅掌楸碱银配合物体外诱导肺癌SPC-A-1细胞凋亡及其机制的研究[J]. 中国药理学通报, 2008, 24(11): 1449-1452. DOI:10.3321/j.issn:1001-1978.2008.11.013
[12] CHEN Z F, LIU Y C, LIU L M, et al. Potential new inorganic antitumour agents from combining the anticancer traditional Chinese medicine (TCM) liriodenine with metal ions, and DNA binding studies[J]. Dalton Trans, 2009(2): 262-772. DOI:10.1039/B813363H
[13] INGKANINAN, PHENGPA P, YUENYONGSAWAD S, et al. Acetyl-cholinesterase inhibitors from Stephania venosa tuber[J]. J Pharm Pharmac, 2006, 58(5): 695-700. DOI:10.1211/jpp.58.5.0015
[14] ZUO A X, MA Y S, RAO G X. Akaloids roots of Stephania mashanica[J]. Chin J Exp Trad Med Form, 2013, 19(9): 136-139.
左爱学, 马云淑, 饶高雄. 马山地不容的生物碱成分[J]. 中国实验方剂学杂志, 2013, 19(9): 136-139. DOI:10.11653/syfj2013090136
[15] SETTE I M F, DA-CUNHA E V L, BARBOSA-FILHO J M, et al. Tetrahydroprotoberberine and aporphine alkaloids from Rollinia lepto-petala[J]. Pharm Biol, 2000, 38(4): 318-320. DOI:10.1076/1388-0209(200009)3841-AFT318
[16] FAJARDO V, ARAYA M, CUADRA P, et al. Pronuciferine N-oxide, a proaporphine N-oxide alkaloid from Berberis coletioides[J]. J Nat Prod, 2009, 72(7): 1355-1356. DOI:10.1021/np9000976
[17] ZANIN S M W, LORDELLO A L L. Aporphine alkaloids in Ocotea species (Lauraceae)[J]. Quím Nova, 2007, 30(1): 92-98. DOI:10.1590/S0100-40422007000100020
[18] KASHIWABA N, MOROOKA S, KIMURA M, et al. New morphi-nane and hasubanane alkaloids from Stephania cepharantha[J]. J Nat Prod, 1996, 59(5): 476-480. DOI:10.1021/np960080d
[19] CHENG X X, WANG D M, JIANG L, et al. DNA topoisomerase I inhibitory alkaloids from Corydalis saxicola[J]. Chem Biodiv, 2008, 5(7): 1335-1344. DOI:10.1002/cbdv.200890121
[20] ZUO A X, ZHANG Q L, LI L, et al. Studies on alkaloids of Stephania micrantha[J]. Chin J Exp Trad Med Form, 2013, 19(6): 134-137.
左爱学, 张秋玲, 李莉, 等. 小花地不容的生物碱成分[J]. 中国实验方剂学杂志, 2013, 19(6): 134-137. DOI:10.13422/j.cnki.syfjx.2013.06.056
[21] ZHANG Z Z, ELSOHLY H N, JACOB M R, et al. New sesqui-terpenoids from the root of Guatteria multivenia[J]. J Nat Prod, 2002
[22] da SILVA M S, TAVARES J F, QUEIROGA K F, et al. Alkaloids and other constituents from Xylopia langsdorffiana (Annonaceae)[J]. Quím Nova, 2009, 32(6): 1566-1570. DOI:10.1590/S0100-40422009000600040
[23] DUAN X H, PEI L, JIANG J Q. Cytotoxic alkaloids from stems of Nelumbo nucifera[J]. China J Chin Mat Med, 2013, 38(23): 4104-4108.
段绪红, 裴林, 蒋建勤. 荷梗中的细胞毒活性生物碱[J]. 中国中药杂志, 2013, 38(23): 4104-4108. DOI:10.4268/cjcmm20132323
[24] SOLIS P N, WRIGHT C W, ANDERSON M M, et al. A microwell cytotoxicity assay using Artemia salina (brine shrimp)[J]. Planta Med, 1993, 59(3): 250-252. DOI:10.1055/s-2006-959661
[25] MEYER B N, FERRIGNI N R, PUTNAM J E, et al. Brine shrimp:A convenient general bioassay for active plant constituents[J]. Planta Med, 1982, 45(5): 31-34. DOI:10.1055/s-2007-971236
[26] RAO G X, ZHANG S, WANG H M, et al. Antifungal alkaloids from the fresh rattan stem of Fibraurea recisa Pierre[J]. J Ethnopharmac, 2009, 123(1): 1-5. DOI:10.1016/j.jep.2009.02.046
[27] AIRASATHIEN L, PENGSUPARP T, MORIYASU M, et al. Cytotoxic C-benzylated chalcone and other constituents of Ellipeiopsis cherrevensis[J]. Arch Pharmac Res, 2006, 29(6): 497-502. DOI:10.1007/BF02969423
[28] NAKAMURA N, HATTORI M, KUROKAWA M, et al. Anti-herpes simplex virus activity of alkaloids isolated from Stephania cepharantha[J]. Biol Pharmac Bull, 1999, 22(3): 268-274. DOI:10.1248/bpb.22.268