文章快速检索     高级检索
  热带亚热带植物学报  2017, Vol. 25 Issue (6): 610-616  DOI: 10.11926/jtsb.3754
0

引用本文  

米承能, 梅文莉, 李薇, 等. 大叶桃花心木根的化学成分研究[J]. 热带亚热带植物学报, 2017, 25(6): 610-616. DOI: 10.11926/jtsb.3754.
MI Cheng-neng, MEI Wen-li, LI Wei, et al. Chemical Constituents from the Roots of Swietenia macrophylla King[J]. Journal of Tropical and Subtropical Botany, 2017, 25(6): 610-616. DOI: 10.11926/jtsb.3754.

基金项目

海南省重点研发计划项目(社会发展)(ZDYF2016140);中国热带农业科学院基本科研业务费专项基金(17CXTD-15);海南自然科学基金创新研究团队项目(2017CXTD020)资助

通信作者

戴好富, E-mail:daihaofu@itbb.org.cn

作者简介

米承能(1988~), 男, 研究生, 从事天然产物化学研究。E-mail:1034594309@qq.com

文章历史

收稿日期:2017-04-21
接受日期:2017-06-19
大叶桃花心木根的化学成分研究
米承能 1,2, 梅文莉 1, 李薇 1, 王军 1, 蔡彩虹 1, 李绍鹏 2, 戴好富 1     
1. 中国热带农业科学院热带生物技术研究所, 农业部热带作物生物学与遗传资源利用重点实验室, 海口 571101;
2. 海南大学热带农林学院, 海口 570228
摘要:为了解大叶桃花心木(Swietenia macrophylla King)的化学成分,从其根的乙醇提取物中共分离得到13个化合物,经理化性质和波谱分析,分别鉴定为1,5-dihydroxyxanthone(1)、1,6-dihydroxy-5-methoxyxanthone(2)、euxanthone(3)、1,2-dimeth-oxyxanthone(4)、(+)儿茶素(5)、(+)sesamin(6)、bis-(2-ethylhexyl)phthalate(7)、3-oxotirucalla-7,24-dien-21-oic acid(8)、(20S)-3β-acetoxy-24-methylenedam-maran-20-ol(9)、cycloeucalenol(10)、β-谷甾醇(11)、7-deacetoxy-7-oxogedunin(12)和7-deacetoxy-7α-hydroxygedunin(13),其中化合物1~46~1013为首次从桃花心木属植物中分离得到,且化合物4对乙酰胆碱酯酶具有一定的抑制活性。
关键词大叶桃花心木    化学成分    (口山)酮    柠檬苦素    乙酰胆碱酯酶抑制活性    
Chemical Constituents from the Roots of Swietenia macrophylla King
MI Cheng-neng 1,2, MEI Wen-li 1, LI Wei 1, WANG Jun 1, CAI Cai-hong 1, LI Shao-peng 2, DAI Hao-fu 1     
1. Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Academy of Tropical Agricultural Sciences, Haikou 571101, China;
2. Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
Foundation item: This work was supported by the Key Research Project for Social Development in Hainan Province (Grant No. ZDYF2016140), the National Nonprofit Institute Research Grant of CATAS-ITBB (Grant No. 17CXTD-15), and the Natural Science Foundation of Hainan (Grant No. 2017CXTD020)
Abstract: In order to understand the chemical constituents of Swietenia macrophylla King, thirteen compounds were isolated from its roots. On the basis of spectral data, they were identified as 1, 5-dihydroxyxanthone (1), 1, 6-dihydroxy-5-methoxyxanthone (2), euxanthone (3), 1, 2-dimethoxyxanthone (4), (+) catechin (5), (+) sesamin (6), bis-(2-ethylhexyl) phthalate (7), 3-oxotirucalla-7, 24-dien-21-oic acid (8), (20S)-3β-acetoxy-24-methylenedam-maran-20-ol (9), cycloeucalenol (10), β-sitosterol (11), 7-deacetoxy-7-oxogedunin (12) and 7-deacetoxy-7α-hydroxygedunin (13). Among them, compounds 1-4, 6-10 and 13 were isolated from the genus Swietenia for the first time. Moreover, compound 4exhibited inhibitory activity against acetylcholinesterase.
Key words: Swietenia macrophylla    Chemical constituent    Xanthone    Limonoid    Anti-acetylcholinesterase activity    

大叶桃花心木(Swietenia macrophylla King)为楝科(Meliaceae)桃花心木属植物,原产于拉丁美洲,广泛分布于整个美洲的热带地区,特别是中美洲、墨西哥和玻利维亚[1]。现已在全球的热带地区广泛栽培,在我国海南、广东、广西、福建、云南、台湾等地也有种植[2],主要用于绿化造林[3]。其种子在马来西亚及印度尼西亚等地被用来治疗糖尿病、高血压、疟疾等疾病以及缓解疼痛[1, 4]。近年来,为了寻找大叶桃花心木中的生物活性成分,对其地上部分的化学成分及生物活性进行了较为系统的研究,分离的化学成分以结构复杂多变,氧化程度高的柠檬苦素类化合物为主,这类化合物具有抗氧化[5]、拒食[6-8]、细胞毒[9-10]、抗病毒[11]等多种活性。然而,对大叶桃花心木根的化学成分研究目前还未见报道,本研究从大叶桃花心木根的乙醇提取物的乙酸乙酯部分分离鉴定了13个化合物,并检测了化合物对乙酰胆碱酯酶活性的抑制作用,为大叶桃花心木的开发利用提供科学依据。

1 材料和方法 1.1 材料

试验材料于2014年4月采集于海南省海口市中国热带农业科学院,经中国热带农业科学院热带生物技术研究所刘寿柏博士鉴定为楝科桃花心木属植物大叶桃花心木(Swietenia macrophylla King), 凭证标本(DYTHXM201404)存放于中国热带农业科学院热带生物技术研究所。

1.2 仪器和试剂

薄层层析硅胶和柱色谱硅胶(200~300目)为青岛海洋化工厂产品,Sephadex LH-20为Merck公司产品,ODS (20~45 μm)为Fuji公司产品;MS谱采用Autospec-3000质谱仪测定;NMR采用Brucker AV-500型超导核磁仪测定,以TMS为内标;旋光仪为Rudolph Research Analytical生产的Rudolph Autopol Ⅲ polarimeter型旋光仪;乙酰胆碱酯酶、SHENGCHAN碘化硫代乙酰胆碱、二硫代二硝基苯甲酸(DNTB)和他克林均购自Sigma公司;酶标仪采用美国宝特公司ELX-800酶标仪,超净工作台为上海博讯实业有限公司医疗设备厂产品。

1.3 提取和分离

大叶桃花心木根(干重57.0 kg)用95%乙醇室温浸提3次,每次7 d,合并提取液减压浓缩,得乙醇提取物(8.0 kg)。将提取物分散于水中成悬浊液, 依次用石油醚和乙酸乙酯萃取3次,减压浓缩,分别得石油醚萃取物(231.4 g)和乙酸乙酯萃取物(3931.0 g)。乙酸乙酯萃取物经硅胶柱色谱(200~300目),以氯仿-甲醇(10:1)洗脱,收集得到Fr.1 (573.0 g)。Fr.1经减压硅胶柱层析(硅胶H),以石油醚-乙酸乙酯(0:1~5:1)和氯仿-甲醇(1:0~0:1)梯度洗脱,TLC检测合并,共收集得到17个流份(Fr.1-1~Fr.1-17)。Fr.1-3 (18.3 g)反复经Sephadex LH-20和正相硅胶柱色谱,得到化合物7 (30.0 mg)和9 (18.7 mg);Fr.1-4 (21.5 g)结晶析出化合物10 (30.0 mg)和11 (30.0 mg);Fr.1-8 (19.5 g)经加压ODS柱层析,以甲醇-水(3:7~1:0)梯度洗脱,再反复经Sephadex LH-20和正相硅胶柱色谱分离得到化合物1 (6.1 mg)、2 (2.2 mg)、3 (13.1 mg)、4 (5.4 mg)、6 (3.4 mg)和8 (28.8 mg);Fr.1-10 (153.8 g)经反复加压硅胶柱层色谱、Sephadex LH-20柱色谱及加压ODS柱色谱,得到化合物12 (30.0 mg)和13 (30.0 mg);Fr.1-17 (25.0 g)经反复Sephadex LH-20和硅胶柱色谱分离,重结晶得到化合物5 (30.0 mg)。

1.4 结构鉴定

化合物1  黄色针状结晶(丙酮); ESI-MS m/z: 251 [M + Na]+; C13H8O4; 1H NMR (500 MHz, DMSO-d6): δ 12.58 (1H, s, 1-OH), 7.72 (1H, dd, J= 8.3, 8.3 Hz, H-3), 7.58 (1H, dd, J = 1.6, 8.0 Hz, H-8), 7.34 (1H, dd, J = 1.6, 8.0 Hz, H-6), 7.28 (1H, dd, J = 8.0, 8.0 Hz, H-7), 7.08 (1H, d, J = 8.3 Hz, H-4), 6.80 (1H, d, J = 8.3 Hz, H-2); 13C NMR (125 MHz, DMSO-d6): δ 161.2 (C-1), 110.3 (C-2), 137.8 (C-3), 107.7 (C-4), 155.9 (C-4a), 146.6 (C-5), 121.4 (C-6), 124.7 (C-7), 115.0 (C-8), 121.2 (C-8a), 182.4 (C-9), 108.4 (C-9a), 145.5 (C-10a)。上述数据与文献[12]报道一致,故鉴定为1, 5-Dihydroxyxanthone。

化合物2  黄色针状结晶(丙酮); ESI-MS m/z: 281 [M + Na]+; C14H10O5; 1H NMR (500 MHz, acetone-d6): δ 12.86 (1H, s, 1-OH), 7.88 (1H, d, J = 8.8 Hz, H-8), 7.69 (1H, dd, J = 8.3, 8.3 Hz, H-3), 7.07 (H, d, J = 8.3 Hz, H-4), 7.01 (H, d, J = 8.8 Hz, H-7), 6.78 (1H, d, J = 8.3 Hz, H-2), 4.02 (3H, s, 5-OMe); 13C NMR (125 MHz, acetone-d6): δ 162.9 (C-1), 111.2 (C-2), 137.5 (C-3), 107.8 (C-4), 157.1 (C-4a), 135.6 (C-5), 157.7 (C-6), 114.8 (C-7), 122.3 (C-8), 111.2 (C-8a), 182.3 (C-9), 109.0 (C-9a), 151.9 (C-10a), 61.8 (5-OMe)。上述数据与文献[13]报道一致,故鉴定为1, 6-Dihydroxy-5-methoxyxanthone。

化合物3  黄色针状结晶(丙酮); ESI-MS m/z: 251 [M + Na]+; C13H8O4; 1H NMR (500 MHz, acetone-d6): δ 12.71 (1H, s, 1-OH), 9.10 (1H, s, 7-OH), 7.69 (1H, dd, J = 8.2, 8.2 Hz, H-3), 7.59 (1H, d, J = 3.0 Hz, H-8), 7.52 (1H, d, J = 9.0 Hz, H-5), 7.42 (1H, dd, J = 3.0, 9.0 Hz, H-6), 6.99 (1H, d, J = 8.2 Hz, H-4), 6.76 (1H, d, J = 8.2 Hz, H-2); 13C NMR (125 MHz, acetone-d6): δ 162.7 (C-1), 110.5 (C-2), 137.8 (C-3), 107.8 (C-4), 157.3 (C-4a), 120.2 (C-5), 126.2 (C-6), 155.0 (C-7), 109.1 (C-8), 121.8 (C-8a), 183.0 (C-9), 109.1 (C-9a), 151.0 (C-10a)。上述数据与文献[14]报道一致,故鉴定为Euxanthone。

化合物4  黄色针状结晶(丙酮); ESI-MS m/z: 279 [M + Na]+; C15H12O4; 1H NMR (500 MHz, CDCl3): δ 8.30 (1H, dd, J = 8.0, 1.5 Hz, H-8), 7.67 (1H, dd, J = 8.0, 8.0 Hz, H-6), 7.41 (1H, d, J = 8.0 Hz, H-5), 7.36 (1H, d, J = 9.2 Hz, H-3), 7.34 (1H, dd, J = 8.0, 8.0 Hz, H-7), 7.24 (1H, d, J = 9.2 Hz, H-4), 4.02 (3H, s, 1-OMe), 3.94 (3H, s, 2-OMe); 13C NMR (125 MHz, CDCl3): δ 149.0 (C-1), 149.3 (C-2), 120.4 (C-3), 113.3 (C-4), 151.5 (C-4a), 117.5 (C-5), 134.6 (C-6), 123.8 (C-7), 126.9 (C-8), 122.3 (C-8a), 176.8 (C-9), 117.3 (C-9a), 155.5 (C-10a), 61.8 (1-OMe), 57.3 (2-OMe)。上述数据与文献[15]报道一致,故鉴定为1, 2-Dimethoxyxanthone。

化合物5  白色针状结晶(氯仿-甲醇); [α]D25+ 0.80° (c 1, MeOH), ESI-MS m/z: 313 [M + Na]+; C15H14O6; 1H NMR (500 MHz, acetone-d6): δ 6.89 (1H, d, J = 1.9 Hz, H-2′), 6.79 (1H, m, H-6′), 6.75 (1H, m, H-5′), 6.02 (1H, d, J = 2.3 Hz, H-8), 5.87 (1H, d, J = 2.3 Hz, H-6), 4.56 (1H, d, J = 7.9 Hz, H-2), 3.99 (1H, m, H-3), 2.91 (1H, dd, J = 5.4, 16.1 Hz, H-4a), 2.54 (1H, dd, J = 8.5, 16.1 Hz, H-4b); 13C NMR (125 MHz, acetone-d6): δ 82.6 (C-2), 68.3 (C-3), 28.8 (C-4), 157.2 (C-5), 96.1 (C-6), 157.7 (C-7), 95.4 (C-8), 156.8 (C-9), 100.6 (C-10), 132.1 (C-1′), 115.2 (C-2′), 145.7 (C-3′), 145.6 (C-4′), 115.7 (C-5′), 120.0 (C-6′)。上述数据与文献[16]报道一致,故鉴定为(+)儿茶素。

化合物6黄色油状物; [α]D25+62.8° (c 1, CHCl3), ESI-MS m/z: 377 [M + Na]+; C20H18O6; 1H NMR (500 MHz, CDCl3): δ 6.85 (2H, s, H-2′, H-2"), 6.80 (2H, d, J = 8.1 Hz, H-6′, H-6"), 6.78 (2H, d, J = 8.1 Hz, H-5′, H-5"), 5.95 (4H, s, 2×OCH2O), 4.71 (2H, d, J = 3.6 Hz, H-2, H-6), 4.23 (2H, dd, J = 6.6, 8.8 Hz, H-4a, H-8a), 3.87 (2H, dd, J = 2.8, 8.8 Hz, H-4b, H-8b), 3.05 (2H, s, H-1, H-5); 13C NMR (125 MHz, CDCl3): δ 54.5 (C-1, C-5), 85.9 (C-2, C-6), 71.9 (C-4, C-8), 135.2 (C-1′, C-1"), 106.6 (C-2′, C-2"), 148.1 (C-3′, C-3"), 147.3 (C-4′, C-4"), 108.3 (C-5′, C-5"), 119.5 (C-6′, C-6"), 101.2 (OCH2O)。上述数据与文献[17]报道一致,故鉴定为(+) Sesamin。

化合物7无色油状; ESI-MS m/z: 413 [M + Na]+; C24H38O4; 1H NMR (500 MHz, CDCl3): δ 7.70 (2H, dd, J = 3.4, 5.6 Hz, H-2), 7.52 (2H, dd, J = 3.4, 5.6 Hz, H-3), 4.21 (4H, dd, J = 6.0, 10.9 Hz, H-6), 1.68 (2H, t, J = 6.2 Hz, H-7), 1.29~1.46 (16H, m, H-8, H-9, H-10, H-12), 0.87~0.93 (12H, m, H-11, H-13); 13C NMR (125 MHz, CDCl3): δ 132.6 (C-1), 128.9 (C-2), 131.0 (C-3), 167.9 (C-4), 68.2 (C-6), 38.8 (C-7), 30.5 (C-8), 29.0 (C-9), 23.1 (C-10), 14.2 (C-11), 23.8 (C-12), 11.1 (C-13)。上述数据与文献[18]报道一致, 故鉴定为bis-(2-Ethylhexyl) phthalate。

化合物8白色结晶(氯仿); [α]D25+7.8° (c 1, CHCl3), ESI-MS m/z: 477 [M + Na]+; C30H46O3; 1H NMR (500 MHz, CDCl3): δ 5.31 (1H, m, H-7), 5.08 (1H, t, J = 6.8 Hz, H-24), 2.73 (1H, dt, J = 5.3, 14.4 Hz, H-2a), 2.26 (1H, m, H-2b), 2.26 (1H, m, H-9), 2.26 (1H, m, H-20), 2.07 (2H, m, H-6), 2.05 (1H, m, H-17), 1.98 (2H, m, H-23), 1.94 (1H, m, H-1a), 1.73 (1H, m, H-5), 1.67 (3H, s, H-27), 1.58 (3H, s, H-26), 1.51 (2H, m, H-11), 1.45 (1H, m, H-1b), 1.12 (3H, s, H-29), 1.04 (3H, s, H-28), 1.00 (3H, s, H-30), 0.98 (3H, s, H-19), 0.88 (3H, s, H-18); 13C NMR (125 MHz, CDCl3): δ 38.7 (C-1), 35.0 (C-2), 217.0 (C-3), 48.0 (C-4), 52.5 (C-5), 24.5 (C-6), 118.4 (C-7), 145.6 (C-8), 48.3 (C-9), 35.2 (C-10), 18.0 (C-11), 30.2 (C-12), 43.5 (C-13), 51.1 (C-14), 33.6 (C-15), 27.3 (C-16), 49.9 (C-17), 21.8 (C-18), 12.9 (C-19), 47.5 (C-20), 182.2 (C-21), 32.4 (C-22), 26.1 (C-23), 123.7 (C-24), 132.4 (C-25), 17.8 (C-26), 25.8 (C-27), 24.7 (C-28), 21.7 (C-29), 27.5 (C-30)。上述数据与文献报道[19]一致, 故鉴定为3-Oxotirucalla-7, 24-dien-21-oic acid。

化合物9  白色粉末; ESI-MS m/z: 523 [M + Na]+; C33H57O3; 1H NMR (500 MHz, CDCl3): δ 4.73 (1H, s, H-24a), 4.64 (1H, d, J = 1.0 Hz, H-24b), 4.47 (1H, dd, J = 10.7, 5.6 Hz, H-3), 2.26 (1H, m, H-25), 2.10 (1H, m, H-23a), 2.08 (1H, m, H-23b), 2.03 (3H, s, CH3COO), 1.83 (1H, m, H-16a), 1.74 (1H, m, H-17), 1.73 (1H, m, H-12a), 1.68 (1H, m, H-1a), 1.62 (1H, m, H-2a), 1.61 (1H, m, H-2b), 1.60 (1H, m, H-13), 1.58 (1H, m, H-22a), 1.57 (1H, m, H-22b), 1.54 (1H, m, H-7a), 1.52 (1H, m, H-12b), 1.51 (1H, m, H-6a), 1.46 (1H, m, H-11a), 1.45 (1H, m, H-6b), 1.42 (1H, m, H-15a), 1.34 (1H, m, H-9), 1.27 (1H, m, H-7b), 1.26 (1H, m, H-11b), 1.25 (1H, m, H-16b), 1.13 (3H, m, H-21), 1.08 (1H, m, H-15b), 1.06 (1H, m, H-1b), 1.03 (3H, d, J = 6.8 Hz, H-26), 1.03 (3H, d, J = 6.8 Hz, H-27), 0.96 (3H, s, H-30), 0.87 (3H, s, H-18), 0.86 (3H, s, H-19), 0.84 (3H, s, H-28), 0.84 (3H, s, H-29), 0.82 (1H, m, H-5); 13C NMR (125 MHz, CDCl3): δ 38.8 (C-1), 23.9 (C-2), 80.7 (C-3), 38.1 (C-4), 56.1 (C-5), 18.3 (C-6), 35.3 (C-7), 40.5 (C-8), 50.6 (C-9), 37.2 (C-10), 21.2 (C-11), 25.3 (C-12), 42.3 (C-13), 50.2 (C-14), 31.2 (C-15), 27.6 (C-16), 49.7 (C-17), 16.7 (C-18), 16.5 (C-19), 75.8 (C-20), 25.5 (C-21), 40.7 (C-22), 28.2 (C-23), 156.6 (C-24), 106.3 (C-24), 34.1 (C-25), 22.0 (C-26), 22.1 (C-27), 28.1 (C-28), 16.7 (C-29), 15.7 (C-30), 173.9 (OCOCH3), 21.2 (CH3COO)。以上数据与文献[20]报道一致,故鉴定为(20S)-3β-Acetoxy-24-methylenedam-maran-20-ol。

化合物10白色结晶(氯仿); [α]D25+47.4° (c 1, CHCl3), EI-MS m/z: 449 [M + Na]+; C30H50O; 1H NMR (500 MHz, CDCl3): δ 4.71 (1H, br s, H-30a), 4.66 (1H, br s, H-30b), 3.21 (1H, ddd, J = 4.7, 9.1, 10.9 Hz, H-3), 1.03 (3H, d, J = 6.9 Hz, H-27), 1.01 (3H, d, J = 6.9 Hz, H-26), 0.97 (3H, d, J = 6.2 Hz, H-29), 0.96 (3H, s, H-18), 0.89 (3H, d, J = 6.3 Hz, H-21), 0.88 (3H, s, H-28), 0.38 (1H, d, J = 4.0 Hz, H-19a), 0.14 (1H, d, J = 4.0 Hz, H-19b); 13C NMR (125 MHz, CDCl3): δ 30.9 (C-1), 34.9 (C-2), 76.7 (C-3), 44.7 (C-4), 43.5 (C-5), 24.8 (C-6), 25.3 (C-7), 47.0 (C-8), 23.7 (C-9), 29.6 (C-10), 27.1 (C-11), 33.0 (C-12), 45.5 (C-13), 49.0 (C-14), 35.5 (C-15), 28.2 (C-16), 52.3 (C-17), 17.9 (C-18), 27.4 (C-19), 36.3 (C-20), 18.5 (C-21), 35.1 (C-22), 31.4 (C-23), 157.0 (C-24), 33.9 (C-25), 22.1 (C-26), 22.0 (C-27), 19.3 (C-28), 14.5 (C-29), 106.1 (C-30)。上述数据与文献[21]报道一致,故鉴定此化合物为Cycloeucalenol。

化合物11  白色针状结晶(氯仿),与β-谷甾醇标准品进行TLC比较,3个系统展开,Rf值一致,故鉴定为β-谷甾醇。

化合物12  无色片状结晶(氯仿); [α]D25+11.8° (c 1, CHCl3), ESI-MS m/z: 461 [M + Na]+; C26H30O6; 1H NMR (500 MHz, CDCl3): δ 7.39 (1H, s, H-21), 7.36 (1H, t, J = 1.3 Hz, H-23), 7.08 (1H, d, J = 10.2 Hz, H-1), 6.33 (1H, d, J = 1.3 Hz, H-22), 5.89 (1H, d, J = 10.2 Hz, H-2), 5.44 (1H, s, H-17), 3.83 (1H, s, H-15), 2.90 (1H, t, J = 14.4 Hz, H-6a), 2.38 (1H, dd, J = 3.2, 14.6 Hz, H-6b), 2.18 (1H, d, J = 10.9 Hz, H-9), 2.15 (1H, dd, J = 3.2, 14.4 Hz, H-5), 1.98 (1H, m, H-11a), 1.91 (3H, s, H-30), 1.84 (1H, m, H-12b), 1.77 (1H, m, H-11b), 1.45 (1H, m, H-12a), 1.33 (3H, m, H-19), 1.12 (3H, s, H-28), 1.11 (3H, s, H-18), 1.10 (3H, s, H-29); 13C NMR (125 MHz, CDCl3): δ 156.1 (C-1), 126.4 (C-2), 203.4 (C-3), 45.3 (C-4), 54.6 (C-5), 36.8 (C-6), 208.3 (C-7), 53.5 (C-8), 47.6 (C-9), 39.6 (C-10), 17.2 (C-11), 32.2 (C-12), 37.8 (C-13), 65.7 (C-14), 53.6 (C-15), 167.0 (C-16), 78.1 (C-17), 21.0 (C-18), 19.9 (C-19), 120.2 (C-20), 141.1 (C-21), 109.9 (C-22), 143.2 (C-23), 27.0 (C-28), 20.7 (C-29), 17.4 (C-30)。上述数据与文献[22]报道一致,故鉴定为7-Deacetoxy-7-oxogedunin。

化合物13  白色粉末; [α]D25+60.4° (c 1, CHCl3), ESI-MS m/z: 463 [M + Na]+; C26H32O6; 1H NMR (500 MHz, CDCl3): δ 7.40 (1H, s, H-21), 7.39 (1H, m, H-23), 7.09 (1H, d, J = 10.2 Hz, H-1), 6.33 (1H, s, H-22), 5.83 (1H, d, J = 10.2 Hz, H-2), 5.58 (1H, s, H-17), 3.90 (1H, s, H-15), 3.56 (1H, s, H-7), 2.51 (1H, m, H-9), 2.47 (1H, m, H-5), 1.99 (1H, m, H-11a), 1.96 (1H, m, H-6a), 1.79 (1H, m, H-11b), 1.71 (1H, m, H-12a), 1.67 (1H, m, H-6b), 1.54 (1H, m, H-12b), 1.24 (3H, s, H-18), 1.21 (3H, s, H-19), 1.14 (3H, s, H-28), 1.08 (3H, s, H-29), 1.07 (3H, s, H-20); 13C NMR (125 MHz, CDCl3): δ 158.0 (C-1), 125.9 (C-2), 204.7 (C-3), 44.3 (C-4), 44.7 (C-5), 27.4 (C-6), 69.8 (C-7), 43.8 (C-8), 38.1 (C-9), 40.3 (C-10), 15.2 (C-11), 26.5 (C-12), 38.4 (C-13), 70.2 (C-14), 58.0 (C-15), 168.4 (C-16), 78.6 (C-17), 17.9 (C-18), 20.1 (C-19), 120.8 (C-20), 141.3 (C-21), 110.1 (C-22), 143.1 (C-23), 27.4 (C-28), 21.6 (C-29), 18.8 (C-30)。上述数据与文献[23]报道一致,故鉴定为7-Deacetoxy-7α-hydroxygedunin。

1.5 乙酰胆碱酯酶抑制活性测定

根据米承能等[24]的方法测定化合物的抗乙酰胆碱酯酶活性。待测样品用DMSO进行溶解, 取110 μL磷酸缓冲液(pH 8.0)、10 μL待测样品(50 μg mL-1)和40 μL乙酰胆碱酯酶(0.02 μg mL-1)于96孔板中,温育20 min (30℃),加入DTNB (2.48 mg mL-1)和碘化硫代乙酰胆碱(1.81 mg mL-1)等体积混合液20 μL, 反应体系总体积200 μL, 30 min后在酶标仪上于405 nm处进行检测。阳性对照为他克林,反应终浓度为0.08 μg mL-1,阴性对照为DMSO,终浓度为0.1%,3次重复。化合物对乙酰胆碱酯酶的抑制率=[(E-S)/E]×100%, 式中E为阴性对照平均吸光值, S为待测样品的平均吸光值。结果表明,化合物4对乙酰胆碱酯酶有抑制活性,抑制率为12.58%,阳性对照为42.61%。

图 1 化合物1~13结构图 Fig. 1 Structures of compounds 1-13
2 结果和讨论

本研究采取多种色谱技术,从大叶桃花心木根中分离得到了13个化合物,包括𠮿酮、黄酮、木脂素、三萜、柠檬苦素、甾体以及邻苯二甲酸衍生物等7类化合物,分别为1, 5-dihydroxyxanthone (1)、1, 6-dihydroxy-5-methoxyxanthone (2)、euxanthone (3)、1, 2-dimethoxyxanthone (4)、(+)儿茶素(5)、(+) sesamin (6)、bis-(2-ethylhexyl)phthalate (7)、3-oxotirucalla-7, 24-dien-21-oic acid (8)、(20S)-3β-acetoxy-24-methylenedam-maran-20-ol (9)、cycloeucalenol (10)、β-谷甾醇(11)、7-deacetoxy-7-oxogedunin (12)和7-deacetoxy-7α-hydroxygedunin (13),其中化合物1~46~1013为首次从桃花心木属植物中分离得到。乙酰胆碱酯酶抑制活性测试表明,化合物4有一定的乙酰胆碱酯酶抑制活性。同时,据报道化合物6对真菌Cladosporium cladosporioides有抑制活性[17],化合物8对MCF-7癌细胞[16]和HIV-1蛋白酶[25]有抑制作用,化合物10对芳香酶有抑制作用[26],化合物12Spodoptera littoralis的3龄幼虫有拒食活性[27],对Hep-G2有细胞毒活性[9]。本研究结果丰富了大叶桃花心木的化学成分,为进一步开发利用提供了科学依据。

参考文献
[1] Goh B H, Kadir A H. In vitro cytotoxic potential of Swietenia macrophylla King seeds against human carcinoma cell lines[J]. J Med Plants Res, 2011, 5(8): 1395-1404.
[2] LIU J S, ZHU L L, WANG G K, et al. Studies on chemical constituents from the fruit of Swietenia macrophylla[J]. Chin Med Mat, 2016, 39(7): 1530-1535.
刘劲松, 朱莉莉, 王国凯, 等. 向天果化学成分研究[J]. 中药材, 2016, 39(7): 1530-1535. DOI:10.13863/j.issn1001-4454.2016.07.020
[3] Xie G G, Huang S M. The resources of Meliaceae plants in Hainan Island and their exploitation[J]. Trop Geogr, 1991, 11(4): 313-319.
谢国干, 黄世满. 海南岛楝科植物资源及其开发利用[J]. 热带地理, 1991, 11(4): 313-319.
[4] MAITI A, DEWANJEE S, KUNDU M, et al. Protective effect of methanol extract of Swietenia macrophylla seeds on oxidative states associated with streptozotocin induced diabetic rats[J]. Nat Prod Sci, 2007, 13(4): 295-299. DOI:10.1201/9781420012347.ch7
[5] Chen J J, Huang S S, Liao C H, et al. A new phragmalin-type limonoid and anti-inflammatory constituents from the fruits of Swietenia macrophylla[J]. Food Chem, 2010, 120(2): 379-384. DOI:10.1016/j.foodchem.2009.09.093
[6] Mootoo B S, Ali A, Motilal R, et al. Limonoids from Swietenia macrophylla and S. Aubrevilleana[J]. J Nat Prod, 1999, 62(11): 1514-1517. DOI:10.1021/np990199x
[7] Fowles R, Mootoo B, Ramsewak R, et al. Identification of new limonoids from Swietenia and their biological activity against insects[J]. Pest Manag Sci, 2010, 66(12): 1298-1303. DOI:10.1002/ps.2013
[8] Saad M M G, Iwagawa T, Okamura H, et al. Three new mexicanolides from the stem bark of Swietenia mahogani JACQ[J]. Heterocycles, 2004, 63(2): 389-399. DOI:10.3987/COM-03-9932
[9] Pudhom K, Sommit D, Nuclear P, et al. Protoxylocarpins F-H, protolimonoids from seed kernels of Xylocarpus granatum[J]. J Nat Prod, 2009, 72(12): 2188-2191. DOI:10.1021/np900640u
[10] CHENG Y B, CHIEN Y T, LEE J C, et al. Limonoids from the seeds of Swietenia macrophylla with inhibitory activity against dengue virus 2[J]. J Nat Prod, 2014, 77(11): 2367-2374. DOI:10.1021/np5002829
[11] Wu S F, Lin C K, Chuang Y S, et al. Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems[J]. J Viral Hepatitis, 2012, 19(5): 364-370. DOI:10.1111/j.1365-2893.2011.01558.x
[12] Iinuma M, Tosa H, Tanaka T, et al. Two xanthones from root bark of Calophyllum inophyllum[J]. Phytochemistry, 1994, 35(2): 527-532. DOI:10.1016/S0031-9422(00)94795-2
[13] Wu Y. Chemical constituents and bioactivity of Calophyllum inophyllum, Calophyllum membranceum and Myculium of Ganoderma lucidum[D]. Beijing:Chinese Academy of Medical Sciences & Union Medical College, 2004:41-42.
毋艳. 红厚壳、薄叶红厚壳和泰山赤灵芝菌丝体化学成分及生物活性研究[D]. 北京: 中国协和医科大学, 2004: 41-42. http://cdmd.cnki.com.cn/article/cdmd-10023-2006146556.htm
[14] Chen Y P, Liu L, Zhou Y H, et al. Chemical constituents from Sappan lignum[J]. J Chin Pharm Sic, 2008, 17(1): 82-86.
陈玉平, 刘蕾, 周雨虹, 等. 苏木的化学成分研究[J]. 中国药学, 2008, 17(1): 82-86.
[15] Morel C, Séraphin D, Oger J M, et al. New xanthones from Calophyllum caledonicum[J]. J Nat Prod, 2000, 63(11): 1471-1474. DOI:10.1021/np000215m
[16] Li S P. Study on chemical constituents from the roots of Rosa laevigata Michex.[D]. Hefei:Anhui University, 2013:1-46.
李石平. 金樱子根的化学成分研究[D]. 合肥: 安徽大学, 2013: 1-46. http://cdmd.cnki.com.cn/Article/CDMD-10357-1013257312.htm
[17] Jayasinghe L, Kumarihamy B M M, Jayarathna K H R N, et al. Antifungal constituents of the stem bark of Bridelia retusa[J]. Phytochemistry, 2003, 62(4): 637-641. DOI:10.1016/S0031-9422(02)00623-4
[18] Lu X H, Zhang X J, Liang H, et al. Chemical constituents of Angelica sinensis[J]. J Chin Pharm Sic, 2004, 13(1): 1-3.
路新华, 张金娟, 梁鸿, 等. 当归化学成分的研究[J]. 中国药学, 2004, 13(1): 1-3.
[19] Al-Zikri P N H, Taher M, Susanti D, et al. Cytotoxic tirucallane triterpenes from the stem of Luvunga scandens[J]. Rev Brasil Farmacogn, 2014, 24(5): 561-564. DOI:10.1016/j.bjp.2014.10.003
[20] Ndlebe V J, Crouch N R, Mulholland D A. Triterpenoids from the African tree Phyllanthus polyanthus[J]. Phytochem Lett, 2008, 1(1): 11-17. DOI:10.1016/j.phytol.2007.12.002
[21] Zhu W M, Shen Y M, Hong X, et al. Triterpenoids from the Dai medicinal plant Winchia calophylla[J]. Acta Bot Sin, 2002, 44(3): 354-358.
朱伟明, 沈月毛, 洪鑫, 等. 傣族药用植物盆架树中的三萜[J]. 植物学报, 2002, 44(3): 354-358. DOI:10.3321/j.issn:1672-9072.2002.03.018
[22] Kadota S, Marpaung L, Kikuchi T, et al. Constituents of the seeds of Swietenia mahagoni JACQ:Ⅰ. Isolation, structures, and 1H-and 13C-nuclear magnetic resonance signal assignments of new tetranortriterpenoids related to swietenine and swietenolide[J]. Chem Pharm Bull, 1990, 38(3): 639-651. DOI:10.1248/cpb.38.639
[23] Mitsui K, Saito H, Yamamura R, et al. Hydroxylated gedunin derivatives from Cedrela sinensis[J]. J Nat Prod, 2006, 69(9): 1310-1314. DOI:10.1021/np068021f
[24] MI C N, MEI W L, ZUO W J, et al. Chemical constituents from Amoora tetrapetala[J]. Nat Prod Res Dev, 2015, 27(4): 562-566.
米承能, 梅文莉, 左文健, 等. 四瓣崖摩化学成分研究[J]. 天然产物研究与开发, 2015, 27(4): 562-566.
[25] Ma C M, Nakamura N, Hattori M, et al. Inhibitory effects on HIV-1 Protease of constituents from the wood of Xanthoceras sorbifolia[J]. J Nat Prod, 2000, 63(2): 238-242. DOI:10.1021/np9902441
[26] Li Y H, Yang Y F, Li K, et al. 5 Alpha-reductase and aromatase inhibitory constituents from Brassica rapa L. pollen[J]. Chem Pharm Bull, 2009, 57(4): 401-404. DOI:10.1248/cpb.57.401
[27] Abdelgaleil S A M, Doe M, Nakatani M. Rings B, D-seco limonoid antifeedants from Swietenia mahogani[J]. Phytochemistry, 2013, 96: 312-317. DOI:10.1016/j.phytochem.2013.08.006